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A family of explicit nonlinear numerical schemes for Burgers’ equation is derived by means 
of a discrete version of the Hopf-Cole transformation. Exact nonlinear stability conditions for 
these schemes are then found, and for one particular scheme the exact stability criteria are 
compared to the conventional linearized stability condition. 6 1991 Academic Press, Inc. 

1. INTRODUCTION 

The  stability criteria of linear evolution difference equations with periodic 
boundary conditions are easily found by applying a  standard von Neumann 
analysis and  the mechanism for linear blowup (exponentially growing modes)  is 
fully understood. Even when nonperiodic boundary conditions are imposed and  
equations with variable coefficients are considered [l-5], probing the mechanisms 
which cause instability is relatively easy compared to understanding the causes of 
instability in fully nonlinear equations, where little is known. In our view it would 
be  of considerable instructive value to have a  nonlinear difference equation 
available of which the exact solution can be  found and which displays typical non-  
linear blowup. The  analysis of such a  blowup phenomenon  (which would in 
principle be  possible, because the exact solution can be  found) m ight reveal much 
about the origin of and  mechanism causing nonlinear blowup in nonlinear partial 
difference schemes. This is exactly what we intend to do  in this paper. 

Using a  discrete Hopf-Cole transformation (HCT), we derive a  family of explicit 
nonl inear difference schemes for Burgers’ equation 

24, - 2cLauu,Y - au,, = 0, a  > 0, (1) 

of which the exact stability criteria are known and  of which the nonlinear blowup 
mechanism is well understood. 

In contrast to linear blowup, which is global, exponentially growing and  (with 
periodic boundary conditions) independent of the initial condition, numerical 
experimental experience indicates that the blowup in nonlinear schemes are often 
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- local [6], 
- very sudden rather than exponentially growing [6-81 (the solution seems to 

encounter a singularity in time), 
- dependent on the initial condition [6, 8, 1 l] (even with periodic boundary 

conditions). 

The family of schemes that we derive here display all these characteristics, but the 
important point is that we can, in this particular case, understand why and how it 
happens. These schemes also display a typical linear blowup, when an associated 
linear stability condition is violated, and hence demonstrates that the same non- 
linear scheme can display various kinds of instabilities. 

We wish to stress that these schemes are special, and it is highly unlikely that 
other nonlinear schemes would lend themselves to precisely such an analysis, but 
we feel that the knowledge gained by studying these special schemes might give new 
insight into the nature of nonlinear instabilities. Techniques such as linearizing (see, 
e.g., [ 12]), discrete multiple scales analysis [ 13, 141, and other perturbational 
techniques are essentially concerned with weak nonlinearities, while studying an 
associated system of nonlinear ODES [9-l l] or studying the interaction of a small 
number of modes [6, 15, 161, could limit the scope for which the analysis is 
appropriate. We consider here fully discretized, fully nonlinear schemes and assume 
that the solution may contain any number of modes or be represented by any 
number of points in space. Since the exact nonlinear stability criteria of these 
schemes are known, we also want to propose these schemes as prototype examples 
on which many of the above-mentioned techniques can be tried. 

2. REMARKS ON THE CONTINUOUS HOPF-COLE TRANSFORMATION 

The continuous Hopf-Cole transformation, first introduced by Hopf [ 173 in 
19.50 and independently by Cole [ 181 in 1951, is a member of the Blcklund trans- 
formations which are sets of equations relating solutions of one partial differential 
equation to those of another. The relevant differential equations are usually non- 
linear, but in the case of the Hopf-Cole transformation one is the linear heat 
equation 

v, - c7v,, = 0. (2) 

The solutions of Eq. (1) are mapped to solutions of Eq. (2) by the Hopf-Cole 
transformation 

Since solutions of the Heat equation are obtainable by means of the Fourier trans- 
form or other integral transforms, solutions of Burgers’ equation can be obtained 
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via this mapping. For integral representations of exact solutions of Burgers’ 
equation see Whitham [ 19, Chap. 41. 

This method of obtaining solutions to nonlinear PDEs via linearizing transfor- 
mations have been generalized and extended by, among others, Sachdev [20] and 
Tasso and Teichmann [21]. The generalizations involved consist of considering 
other linear PDEs than the heat equation and mapping them via the Hopf-Cole 
transformation to nonlinear PDEs. Time and space dependent coefficients are intro- 
duced, and systems of coupled equations are also considered. In [22] matrix 
versions of Burgers’ equation are considered and a semidiscretization of these 
matrix Burgers’ systems is presented. In [23] fully discrete nonlinear difference 
equations are derived for the scalar case with general Hopf-Cole transformations 
containing higher order differences. 

In the following section we shall introduce a fully discrete Hopf-Cole transforma- 
tion which maps discrete versions of the linear heat equation to discrete versions of 
Burgers’ equation. 

3. DERIVATION OF THE NONLINEAR SCHEMES 

We shall first show how a general linear evolution difference equation with Euler 
time-stepping is transformed into a nonlinear difference equation also with a 
disguised form of Euler time-stepping by means of a discrete analogue of the 
Hopf-Cole transformation. 

We discretize the space variable as 

x = hj, .iEC 

and the time variable as 

t=kn, n = 0, 1, . ..( 

and use the following approximations for the continuous functions u and U: 

If: z o(hj, kn), 

UJ.’ z u(hj, kn). 

In order to save space in some of the lengthy formulae in this section and to 
increase readability, we shall present all formulae in this section just for the node 
with n = 0 and j = 0. Then, whenever a superscript is zero, we shall simply suppress 
it. Thus a formula of the form f( Vy + ‘, VT, Vy+ , , I’:- ,) will be written as 
fv$ vo, VI, fc1). 

We also introduce the factorial power [24] of a discrete function Aj as 

m+r- I 
A(“)= I n Ai> 

i=i 
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and the inverse factorial power 

Throughout this paper the factorial notation will only apply to subscripts. 
The continuous HCT can be expressed in the following convenient format 

where cx is a constant. 

v, = LYUV, (4) 

We now discretize (4) using a forward difference approximation for v, and a 
weighted average for v: 

VI--v, 1 
P=~ctUo[(l +e) V,+(l-8) V,] 

h (5) 

which can be expressed as 

where 

v/1 = fo . vo, (6) 

fo = 1 +ah(l+Q)U,/2 
l-ah(l-8)Uo/2’ (7) 

and QE[-1, 11. 
Applying (6) recursively and using the factorial power notation, we can write 

V,=fbi’. vo. (8) 

We now consider a general discrete linear evolution equation of the form 
fo + J 

VA= 1 bjVj, 
j = Jo 

(9) 

where the b, are constants. 
By substituting (8) into (9), we obtain 

V;=(;~J~bjj”f)4’o. (10) 

We now obtain V: in two ways-by shifting (6) in time and shifting (10) in space: 
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Assuming that V, f 0, elimination of V: and V, from both these equations gives 

which can also be expressed as 

Jo, + J J,, + J 

(.f:,-fo) 1 b,fb’)=.h c bjvivfb”)> (11) 

I = Jo j = Jo 

where the Euler time-stepping approximation on the left-hand side is more evident. 
We now consider a discrete heat equation of the form 

(12) 

with 0 the positive diffusivity constant. Rewrite (12) as 

V:,=h-, v-, +b,V,+h, v,, (13) 

where 

k,=b,=r, b,= 1-2r, with r = kalh2. 

Using the discrete Hopf-Cole transformation (6), with f0 given by (7), evaluation 
of (11) gives the following discretization of Burgers’ equation: 

(U:,-~I,)[1-~crhre(U,-2U,+U_,)+~crh(r-1)(U,-U~,) 

+ iah@ U, + U- 1) - ~a2h2rOU,( U1 - Up ,) 

+a~r~h~r(6~+ l)(U,U,-2U,K, + UoUp,)+~a2h2(02- 1) U,U_,] 

=r(U,-2U,+U~,)+~hr[Uo(U,-U~,)+O(U,U~1-(U,)2)] 

+ ia2h2rO( Uo)2( U, - K,) 

-~a2h2r(l+02)Uo(U,U,-2U,K,+U,Up,). (14) 

We shall refer to this scheme as the general discrete Burgers’ equation. 
For our subsequent discussion, we shall only use two special cases of this general 

formula: 8 = 1, which we shall call the skew scheme and will be used in the discus- 
sion of the boundary conditions in Section 4; and 8 = 0 which we shall call the 
central scheme for which we shall do a linearized stability analysis in Section 6, and 
which will be used mostly in the numerical experiments in Section 7. 
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The central scheme (0 = 0) is given by 

1 

-g U()(U, lJ,- 2u, u- I + uou-1) (15) 

which approximates Burgers’ equation to the second order in h and first order 
in k: 

u, Cl + (O(k) + O(h2))(u, + u’)] = ou,, + 2am4, + O(h’) 2424 - uu,,). (16) 

The skew scheme (8 = 1) is given by 

This scheme approximates Burgers’ equation to first order in both h and k 

u, [ 1 + O(h)u + O(k)u, + O(k)u2] = ITU,, + 2cmu, + O(h) u’u,. 

4. TREATMENT OF INITIAL AND BOUNDARY CONDITIONS 

(17) 

(18) 

Since the treatment of the special boundary conditions for V; is substantially 
easier if one has a non-rational form for fJ!, we discuss only the case of the skew 
scheme (0 = 1 ), for which 

j-i” = 1 -I- clhUi”. 

The general case is similar, but the manipulations are more involved. 

Continuous Case 

Assume that Burgers’ equation 

24, - 2c%U, - cm,, = 0 
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is to be solved with periodic boundary conditions, 

u(x, t) = u(x + 6, t), for all x E R, t > 0, 

and with a b-periodic initial condition, 

u(x, 0) = u(x + b, 0), XE R. 

Using the HCT, (4), it is easy to show that 

u(x + 6, t) = u(x, t) exp(uC(t)), 

where 

C(t)=jrfbu((, t)d& 
x 

but since u(x, t) is b-periodic in space and satisfies Burgers’ equation (l), 
dC(t)/dz = 0; hence C(t) is constant. The problem can thus be solved by 
transforming the periodic initial condition for u over one period to the initial 
condition for 21 using the HCT and choosing (arbitrarily) ~(0, 0) = 1. The heat 
equation is then solved using this initial condition with the following boundary 
conditions: 

Discrete Case 

u(x + 6, t) = u(x, t) exp(aC(0)). 

For the discrete case, let h = b/N and iJ; = u(hj, 0), j = 0, 1, 
periodic UJ!, the appropriate periodic boundary conditions are 

u; = u;+N. 

Applying the discrete HCT, 

v-y,, =(l +cYhU,“) vi”; 

recursively, it can be shown that VJ’ satisfies 

GN+j = v;(c,)” for j=O, 1, . . . . N-l and kEZ, 

where 

c, = ( 1 + c&U;)(N). 

.  . . )  N-l. For 

(19) 

(20) 

(21) 

(22) 

We now proceed to prove that C, is independent of n. Stating that UJ! satisfies 
the discrete Burgers’ equation (17) is equivalent to stating that VJ! satisfies the 
discrete heat equation (12) and that the discrete HCT (20) applies. In order to 

581.‘97:1-6 
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avoid complicated manipulations we shall never use (17) directly, but make use of 
the above argument. 

Using (20) and the discrete heat equation (12) it can be shown that 

q+‘= L ( I +r -l+ahUi”+ 
1 

1 +&I;-, )I VT. (23) 

Now from (21) it follows that 

C vi”s _ 
n+l ?+I 

and 

Using the relationship (23), one finds 

C n+1= 
[l+r(-l+ahv~+N+l/(l+crhUj”+N-~))] V;+N 

[l+r(-l+ahUi”+l/(l+crhU,“-,))I v; 

and, imposing the periodic boundary conditions for Vi”, (19), it follows that 

C VhL~ - 
n+l v; lz. 

The appropriate boundary conditions for VT are then 

v;+ N = v;c,, (24) 

and one can arbitrarily choose Vz = 1. Thus the discrete heat equation (12) can be 
solved over a single period with the boundary conditions 

v;=c,v;, V”, = v”,-,/co, 

and on any chosen time level the solution V,” can be transformed into the 
corresponding solution for iJ7. However, we do not intend to solve Burgers’ 
equation this way, but we merely want to derive from this how the nonlinear 
scheme for Burgers’ equation can become unstable. 

5. EXACT STABILITY CRITERIA 

The key to understanding the stability properties of the general discrete Burgers’ 
equation (14), lies in the relationship between VJ! and Uy, which is the discrete 
HCT, 

ui” = 
2( vJI+ 1 - P-1) 

ah((l-8) v;+l+(l+e) v;,’ 
(25) 
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Two kinds of unphysical behavior can occur in the solution UJ!: 

(a) VT may be linearly unstable (due to its linear stability condition being 
violated) and will display growing high frequency modes, and this will naturally be 
transferred to the behavior of Uy which then is the quotient of two oscillating 
functions. 

(b) the denominator in (25) may beome zero, which will cause U,” to display 
a singularity. 

The condition mentioned in (a) is imply the von Neumann stability condition for 
the discrete Heat equation, (12), and is given by [25] 

1 h* 
rb- 2 

that is, k<g 
> 

. 

We shall refer to this condition as the linear stability condition. 
Turning to the condition mentioned in (b): Under what conditions will the 

denominator in (25) become zero? (In a computer implementation, it only has to 
become small enough to cause an overflow.) For the case 0 = + 1, it is clear that 
V,” must become zero for some j and n, in order to cause UJ’ to display singular 
behavior. For 8 # f 1, Vi” must differ in sign on two consecutive nodes for the 
denominator to vanish. Thus positivity of I’/” (for all n and j) is a sufficient condi- 
tion to guarantee that U,” will not display singular behavior. 

It should be noted that the linear stability condition 0 <r < $ also guarantees 
that b _, > 0, 6, > 0, and b, > 0 in formula (13). So if initially q is positive for all 
j, any subsequent V; will never become negative. Thus satisfying the von Neumann 
stability condition also guarantees that U: will display no singular behavior as long 
as I’; is positive throughout. 

However, if initially L’; has both positive and negative parts (since it is a discrete 
function, it need not have any zeros), it may develop a condition where the 
denominator in (25) vanishes, as it evolves according to the discrete heat equation. 

Now from (6) P’p is calculated as 

vp = (foo)“‘V~. (27) 

If we choose Vz = 1, positivity of VJ? is guaranteed, when none of the factors in the 
product (G)(j) in (27) are negative, i.e., when 

fl>O forall j=O,l,..., N-l. (28) 

Since UJ appears in the expression for fl, it means that the initial condition, Up, 
is also significant in determining the stability of the scheme. 

We shall refer to condition (28) which renders Vy positive throughout as the 
nonlinear stabilitv condition. 
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For the general scheme (14), a necessary and sufficient nonlinear condition for 
(28) to hold is 

-2 
q< 

2 
crh(1 +e) uh( 1 - 0) 

for all j 

when cc > 0, and when c1< 0, the directions of the inequalities are reversed. 
For the rest of this paper, let ZJ,,, = maxj 1 Uyl. 
For the skew scheme (0 = l), the nonlinear stability condition can be expressed 

as 

for negative a, and we have unconditional nonlinear stability for positive ~1. Thus 
if a > 0 and the linear stability condition is satisfied, we have a scheme for Burgers’ 
equation which is stable for all h and U,,, ! This fact will be explored in the first 
numerical experiment in Section 7. 

For the central scheme (0 = 0), the nonlinear stability condition is 

l~hUn-m,I -=z 2. (31) 

Henceforth we shall refer to the linear and nonlinear stability conditions jointly as 
the exact stability conditions. 

5. THE LINEARIZED STABILITY CONDITION 

To what extent can a von Neumann analysis of the associated linearized scheme 
predict the stability of a nonlinear scheme? It is well known that linearization gives 
a fairly accurate stability condition as long as the ansatz for linearization, namely 
that the solution is a small perturbation about a constant is satisfied. For solutions 
away from these, linearization cannot be trusted, in general. 

We shall now do a von Neumann analysis of a linearized version of the central 
scheme, (15), and compare the results with the exact stability conditions available. 
The results are interesting: there is a close correspondence between the two sets of 
conditions, but linearization predicts stability in a region where the scheme is 
definitely unstable according to the exact stability conditions. 

Set U,” = D + &IV;, and assuming that E is small, we neglect all quadratic and 
higher order terms m E. The perturbation, WT, then satisfies the difference equation 

q+l- W;=A(WJ+, -2w;+ Wi”pl)+B(W;+,- wyp,,, (32) 
where 

A= r(4+P2) 4v 
4+P2(4r- 1)’ 

B= 4+P(4r- 1)’ 
P=crhD. 

Note that (A( > IBJ for all r > 0 and any real P, and also that for all r > 0, A # 0. 



NONLINEAR INSTABILITY IN BURGERS’ EQUATION 83 

The discrete dispersion relation for a single mode of the form 

is given by 

w; = ~~l&h-! 

<=1+2A(cos~-1)+2iBsin~ 

and requiring no growth for this mode imposes the condition 

(33) 

(34) 

For all K E [IO, n], (34) will be satisfied if and only if 

and 

A>2A2 (35) 

A>B2. (36) 

These conditions rule out the possibility of A being negative, thus condition (35) 
becomes 

O<Adf. (37) 

Since IA( 3 IBl, relation (36) is automatically satisfied whenever (35) is. 
For all 

1 1 
r>--- 

4 P2 

the denominator of A is positive, and (37) is then satisfied if and only if 

(r - +)(4 - P’) < 0. (38) 

Thusfor lPl<2, (38)impliesO<rb$, and for lPl>2, (38)impliesr>i. 
Thus the stable region predicted by linearization is the union of 

[II {Iclhol<2}n{r<+} 

and 

[II] {Icth8~~2}n{r>~}. 

The exact stability condition for (15), given by (26) and (31), is 

[III] {lcdzU,,,I~2)n{r<f}. 
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UNSTABLE 

h’ 

FIG. 1. Linearized stability region. 

Figure 1 shows the stability regions in the ah-plane predicted to be stable by 
linearization for fixed k, cr, and D> 0. Figure 2 shows the same for the exact stabilty 
condition, for fixed k, 0, and U,,,. 

If the constant, 0 about which the perturbation is done, is taken to be U,,, (see, 
for example, [6]), then regions [I] and [III] are the same. However, by allowing 
condition [II] also for stability, linearizing seriously misses the point. In the next 
section we shall demonstrate that condition [II] is however, valid for small pertur- 
bations about a constant, but is not valid for general initial conditions deviating far 
away from a constant solution. 

FIG. 2. Exact stability region. 
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6. NUMERICAL EXPERIMENTS 

An Experiment with the Skew Scheme 

The fact that the exact stability condition for the skew scheme, (17), imposes no 
restriction on positive c( for positive initial conditions, as long as the linear stability 
condition (26) is satisfied, is remarkable. This implies that steep fronts will not 
become unstable even for very large nonlinear convection and very small diffusion. 
In the first experiment, we solve this scheme with periodic boundary conditions and 
the following initial condition: 

x~CO,61 

O.gsin(i(x-6)). XE C6,71 u(x, 0)= 0.8, x~C7,81 

O.~COS(;~X-8)) x~[8,9] 

0, XE [9, lo]. 

(39) 

The following parameters were used: 

N= 50, h = 0.2, k = 0.5, 

(7 = 0.001, a=lOOO. 

Hence r =0.0125 < 4 and the linear stability condition is satisfied. With these 
parameters, we are solving the following equation numerically: U, = 2~4, + 0.001~,,~. 
Figure 3 shows the solution, printed every timestep for 38 timesteps. 

FIG. 3. Numerical solution of (17) with initial condition (39); h = 0.2, k = 0.5, CJ = 0.001, a = 1000. 
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Experiments with the Central Scheme 

In the next three experiments, we solve the central scheme, (15), and show that 
the scheme is stable when both the linear (26) and the nonlinear conditions (31) are 
satisfied, and we also show the effects of having just one satisfied and the other 
violated. The following parameters were used in all three experiments: 

N=50, h = 0.2, cJ= 1. 

Periodic boundary conditions were used and the initial condition was (39), thus Uv 
is positive for all j and U,,, = 0.8. 

Figure 4 shows 30 timesteps of the solution for the parameters 

k = 0.018, M = 12.49; 

hence r = 0.45 < 4 and tLhUmax = 1.9984 -C 2. The solution is perfectly stable and, 
although the shock which forms is relatively sharp, it never becomes sharper than 
that which the grid can resolve. 

We now solve (15) with the linear condition violated. The following parameters 
were used: 

k = 0.022, M = 12.49; 

hence clh U,,, = 1.9948 < 2, but r = 0.55 4 $. Figure 5 shows 25 timesteps of the 
solution. The growth of the highest mode is clearly visible. 

We next solve (15) with the nonlinear stability condition violated. The following 
parameters were used: 

k = 0.0195, a = 12.505; 

FIG. 4. Numerical solution of (15) with initial condition (39); h = 0.2, k = 0.018, g = 1, OL = 12.49. 
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FIG. 5. Numerical solution of (15) with initial condition (39); h = 0.2, k = 0.022, CT = 1, r = 12.49 

hence r = 0.4875 < i, but cxhU,,, = 2.0008 4 2. Figure 6 shows 25 timesteps of the 
solution. The pole-type of instability (a simple pole in time) is now clearly visible. 
Also note how the instability recovers after it has become negative. 

The next three experiments demonstrate that the linearized stability analysis is 
valid for the ansatz for which it was derived, i.e., for a solution which is a small 
perturbation about a constant. The interesting point is that linearization predicts 
that for such solutions, the scheme is unstable when either of the exact linear or 
exact nonlinear stability condition is violated, but that is stable when both are 
violated! We shall use the following parameters in all three experiments: 

N=50, h = 0.2, o= 1. 

FIG. 6. Numerical solution of (15) with initial condition (39); h = 0.2, k = 0.0195, CJ = 1, I = 12.505. 
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Y x 

FIG. 7. Numerical solution of (15) with initial condition (40); h = 0.2, k = 0.022, CT = 1, a: = 15.0. 

FIG. 8. Numerical solution of (15) with initial condition (40); h = 0.2, k = 0.015, (T = 1, LX = 20.5 
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FIG. 9. Numerical solution of (15) with initial condition (40); h = 0.2, k = 0.025, 0 = I, a = 20.5 

Figure 7 shows the solution of (15) with periodic boundary conditions and the 
following initial condition: 

. 3 u;= “0.; 
1 ? 

for j= 0, 1, . . . . 39, 41, . . . . 49, 
when j= 40. 

Thus D = 0.5. The other parameters were 

k = 0.022, u = 15.0. 

Here only the linear stability condition is violated: r = 0.55, but uhO= 1.5. The 
growth of a high wavenumber mode is clearly visible. 

Figure 8 shows the solution of (15) with the same initial condition (40) and with 
the parameters: 

k = 0.015, u = 20.5. 

Here only the nonlinear stability condition is violated: clhD = 2.05, but r = 0.375. 
The development of a nonlinear instability is witnessed. 

Figure 9 shows the solution of (15), with the same initial condition (40) and with 
the parameters: 

k = 0.025, u = 20.5. 

Here both stability conditions are violated: crhB = 2.05, and r = 0.625. No form of 
instability is seen. However, when the same parameters are used with an initial 
condition different from a perturbation about a constant solution, usually both 
types of instabilities are seen. 

7. CONCLUSION 

In this paper we have constructed a family of numerical schemes for Burgers’ 
equation in the form of explicit partial difference equations on a uniform grid. The 
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solutions of these nonlinear difference equations can be related to the solutions of 
a discrete version of the linear heat equation by means of a family of discrete 
Hopf-Cole transformations. Since the dynamics of the linear equation is well under- 
stood, we can also analyse the dynamics of the nonlinear schemes and therefore 
establish conditions under which these schemes are guaranteed to be both linearly 
and nonlinearly stable. 

We do not view these schemes so much as serious competitors for existing 
numerical methods to solve Burgers’ equation, but rather as model equations which 
can develop a type of nonlinear instability which is not unlike that observed in 
many other existing schemes. In the present case, however, the actual mechanism 
by which the instabilities develop is fairly simple to analyse. We hope, therefore, 
that the results of our efforts will be useful to anyone wishing to gain more insight 
into the nature of nonlinear instabilities in numerical schemes. 

In addition, we were also able to show, not only how well the results of a conven- 
tional linear stability analysis can predict the actual stability of one of our non- 
linear schemes, but also in which respects such an analysis is misleading. 
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